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Abstract—Garbage collection (GC) is typically a software-based 
process in managed languages that is responsible for freeing 
memory-allocated objects when a program no longer needs them. 
Even in multi-threaded or multi-core processors, the processor 
itself is typically in charge of running the GC program. Because of 
the linear nature of processors, a simple pipelined core might be 
poorly suited for GC. Accordingly, improving the efficiency of GC 
for workloads that spend large proportions of CPU cycles on GC 
can enhance processor performance and energy consumption. 

In this paper, we propose a dedicated hardware-based garbage 
collection module integrated into a RISC-V RocketChip SoC. By 
examining the performance and physical characteristics, we 
compare the trade-offs and potential utility of a dedicated 
hardware garbage collector for certain workloads. Based on the 
work of Maas et. al. [1], we designed our own GC unit that 
implements parallel marking and tracing with a block-based 
sweeper. We propose a new object layout, utilizing shared 
knowledge between the allocator and GC hardware. We 
completed functional verification using Verilator testbenches and 
synthesized our design using the Cadence Genus Synthesis Tool. 
Finally, we built a performance model from our microbenchmark 
results to compare to software-based GC on OpenJDK’s JVM 
running workloads from the DaCapo Java benchmark suite.   

We found an average performance improvement of 1.62x over 
software-based GC with an 11.3% increase in SoC surface area. 
We demonstrate that memory management is well-suited for 
parallel hardware acceleration and compare our performance, 
timing, power, and area to Maas’s hardware. 
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I. INTRODUCTION & PROBLEM STATEMENT 

    Today, many modern workloads are written in managed 

languages rather than compiled languages. One fundamental 

advantage of managed languages is the service of garbage 

collection (GC). Garbage collection is a process that allows 

the automatic freeing of unreachable memory-allocated 

objects. Typically, GC runs on a pipelined processor in 

software. However, because of the linear nature of processors, 

some research has found them to be ill-equipped to efficiently 

handle these potentially parallelizable memory operations 

[10]. For example, most objects in memory can be processed 

independently and could benefit from higher-throughput 

hardware. Moreover, traversal of object graphs like the heap is 

a recursive process that can visit each branch in parallel. 

Accordingly, researchers have investigated the utility of 

garbage collection hardware accelerators. 

Maas et. al. [1] proposed a stop-the-world tracing GC 

hardware accelerator for RISC-V processors. Stop-the-world 

GC pauses the processor’s application to perform memory 

management rather than running concurrently with the 

processor. It is typically triggered when a capacity threshold is 

reached in the memory heap.  

By offloading garbage collection to a dedicated hardware 

module, Maas demonstrated that there is the potential for large 

improvements in workload performance. Fully implementing a 

hardware garbage collector requires modifications to CPU 

architecture, virtual machine memory management, memory 

hierarchy, and the actual SoC modules.  

We built our GC hardware modules with an emphasis on 

high throughput while preserving simplicity. We specifically 

targeted Java workloads that spend large amounts of time in 

GC. Once GC is triggered in Java, the memory management 

system passes reference roots and memory blocks to our 

hardware rather than initiating software-based GC  

To improve the efficiency of GC operations, we constructed 

a stop-the-world mark-and-sweep tracing garbage collector in 

Chisel alongside the in-order RISC-V Rocket core processor. 

We utilized the existing RocketCore framework with TileLink 

and HellaCache protocols for memory and cache accesses. We 

compiled our implementation into RTL modules and verified 

its behavior with Verilator testbenches. 

Through synthesis and performance evaluation on a subset 

of the DaCapo Java benchmark suite, we hope to prove the 

functionality of our hardware accelerator and utility of 

hardware-based garbage collection. 

 

Figure 1: Basic System Architecture: Hardware is initiated by heap usage. 

Once complete, the CPU resumes program. 

II. RELATED WORK 

There has been a fair amount of work in the hardware 

garbage collection space. Researchers have quantified the 

performance improvement of moving GC work into hardware 

[6]. One major topic that was mentioned in [1] and is the focus 

of other research is concurrent garbage collection [4]. As 

opposed to “stop-the-world” collection, concurrent GC runs in 

parallel to an application without pausing it. The speedups 

produced by concurrent GC come with complexity trade-offs 

that were unfeasible for this paper to explore in the given 

timeframe. For places like data centers, the pause times for stop-

the-world GC can be massive and problematic [2-3]. However, 

stop-the-world GC still provides performance improvements 

over traditional GC [1]. Using Chisel [9] to build hardware 

modules was influenced by Maas’ use of RocketChip, which 

implements the Rocket core [5] in Chisel. 



 

   

 

III. RESEARCH QUESTIONS 

    Our project broadly focuses on the trade-offs between 

hardware-dedicated and software-based GC. Specifically, our 

project assesses both the feasibility and utility of developing a 

dedicated GC unit in hardware. A pipelined processor has 

hardware limitations that make efficient GC difficult. 

Accordingly, we hope to quantify the potential impact of a 

hardware unit on workload performance, power consumption, 

and area. Additionally, we intend to compare our hardware and 

design choices to Maas’ hardware to investigate potential 

improvements and the impacts of different object layouts and 

structures.  

    We intend to study how various Java workloads might 

benefit from hardware-accelerated GC. Using the DaCapo 

benchmark suite, we hope to establish the types of application 

workloads that might be best suited for our mark-sweep stop-

the-world garbage collector.  

    More broadly, we also hope to offer a solution for how to 

build a hardware accelerator for garbage collection. Aside from 

the performance and physical ramifications, studying GC 

designs will help us propose what the unit will look like strictly 

in hardware logic.  

    To briefly summarize, our project investigates how to design 

hardware-based GC. Moreover, it evaluates performance of 

hardware-based GC compared to software-based GC and 

establishes the area and power of such a module. Finally, we 

examine the use cases for hardware-based GC and explore the 

ramifications of alternative hardware design choices.  

            

 
 
Figure 2: GC Wrapper Architecture: a block diagram of the modules and 
data structures that are wrapped within our unit. 

 

IV. PROPOSED SOLUTION 

A. Overview 

     We elected to construct our hardware unit through a 
modular approach, separating the responsibility and 
functionality of our mark-sweep collector into submodules 
wrapped in a single controller file. This controller file is 
responsible for the I/O signals, memory pointer management, 
and providing a clean top-level module for synthesis. The four 
modules communicate through various input registers, control 
signals, and queues that run in parallel via separate FSMs. 
     This GC unit is built adjacent to the in-order Rocket core 
on the RocketChip SoC. It does not disrupt the serial 
processing of the CPU. However, it does interface with the 
memory and the cache hierarchy directly. The GC utilizes 
HellaCache and TileLink for memory I/O and requires TLB 
and PTW modules to handle address translation. 
     Our hardware unit is initiated by the virtual machine 
memory management system through a signal that goes high 
when the memory heap reaches a certain utilization threshold 
during runtime. We also simplify our hardware complexity 
through some important assumptions about memory. Our first 
assumption is that the root object pointers for a program are 
easily accessible and can be passed to our GC unit with 
minimal computation. We also assume a traditional object 
header layout that includes a TIB pointer as well as three bits 
for information about marking, free list status, and validity. 
The second half of the header is reserved for a pointer to the 
next element in a free list. For a 40-byte object, this totals to 
roughly a 29% minimum memory overhead for object 
memory, with even more being used for our TIB data and our 
block metadata. Finally, we assume that the memory allocator 
accurately updates the necessary metadata regarding each 
memory block such as cell size, block size, and free list head. 
We assume this metadata is listed at the start of each memory 
block.  
 

B. Hardware Modules 

1. GC Wrapper 
     This module acts as the central controller for our hardware 
GC. It coordinates and instantiates the Marker, Tracer, and 
Sweeper modules, managing initiation, execution, and data 
movement. It operates through three different FSMs, one of 
which starts by loading root object addresses from a dedicated 
place in memory into a mark queue. The inputs into the wrapper 
are a start signal, the address of the reference roots in memory, 
and the address of the memory block pointers. The wrapper 
notifies the memory management system when GC has 
finished, which occurs when all the pointer queues are empty 
and the sweeper is idle.  
    Our wrapper allows the Marker, Tracer, and Sweeper to 
process memory independently, supporting the parallelization 
of GC. The wrapper pops addresses from our Mark Queue for 
the Marker and adds relevant outbound references from Marker 
to our Trace Queue. Similarly, the wrapper is responsible for 
popping addresses from the Trace Queue for the Tracer and 
passing relevant addresses to the mark queue. The wrapper is 
also responsible for initiating the sweeper and passing it the 
necessary block pointers that it loaded into the Sweep Queue. 
Our Mark Queue, Trace Queue, and Sweep Queue are each 
1000 entries in size. 



 

   

 

 

 
 
Figure 3: Marker State Machines: The logic for Marker to visit active objects. 

 

 
 
Figure 4: Tracer State Machines: The logic for Tracer to visit potentially 

cyclic references. 

 
2. Marker 

    This module performs the actual marking for GC. It takes in 
a start flag from the wrapper as well as a virtual address of an 
object to visit. We designed our Marker to translate this address 
using the TLB module and interface. The Marker then loads the 
word at the physical address of the object in question. This word 
is the first half of the object header. Following the 
“conventional” object layout [1], we read the first 32 bits from 
this register value as a virtual address of the Type Information 
Block (TIB) which contains the relevant outbound reference 
metadata for the object. Moreover, the marker sets the LSB of 
this register to 1 (the Mark Bit) and saves the word back into 
memory. This design of the Marker differs from Maas [1], who 
elects for a “bidirectional” object layout and added complexity 
for performance improvements. 
 

 
 

Figure 5: TIB Layout: The number of outbound references is followed by the 
offset for each reference 

 
    With the TIB pointer for the object in question, the Marker 
also translates this address using the TLB. We then load the 
word at the corresponding physical address into a register. This 
64-bit value tells us how many outbound references this object 
contains. We then iterate through each word adjacent to this 
physical address, which provides the offset value of each 
outbound reference. The Marker adds these offset values to the 
original virtual address of the object in question and outputs 
these for the Tracer to visit, along with a data-ready bit.  
    More broadly, the Marker is responsible for indicating to the 
Sweeper if an object in memory is still reachable by the 
program. If so, the Mark Bit will be high and this cell in 
memory will not be freed. Marker traverses the object tree 
starting at the root nodes until it has marked every outbound 
reference and sends nodes to Tracer to ensure it does not 
conduct duplicate visits to the same object. 

 
3. Tracer 

    The Tracer module traverses all the outbound references 
from an object that are popped from the Mark Queue. These 
outbound addresses are provided from the Trace Queue, which 
intakes addresses that were found from an object’s TIB 
(handled in Marker). The purpose of the Tracer is to ensure 
cyclic references are not re-visited by the Marker. As inputs, 
Tracer needs a virtual address from the Trace Queue as well as 
a start signal from the wrapper. The tracer translates the virtual 
address into a physical address via the TLB. It then loads the 
word (first half of the 128-bit header) from this address into a 
register and assesses if the LSB (Mark Bit) is 1. If so, this object 
has already been visited by the Marker and does not need to be 
marked again (a cyclical reference graph likely exists 
somewhere in the program). However, if the LSB is 0, the 
virtual address is outputted by the Tracer along with a data 
ready bit so the address can be added to the Mark Queue.  
    The actual implementation of the Tracer operates through an 
FSM where we are either waiting for a new address, translating 
addresses, loading words, and conditionally sending data out.  
 

 
 
Figure 6: Sweeper State Machine: Sweeper reads block metadata then 
iterates through the cells. 

 
4. Sweeper 

    This module is responsible for adding memory cells to the 
Free List based on the previous operations by the Marker and 



 

   

 

Tracer. The module intakes a virtual address that points to a 
memory block, as well as a start signal by the wrapper. This 
sweeper required some important design choices / assumptions 
about memory to implement. Physical memory is divided into 
blocks, each of which contains several cells. Each cell 
corresponds to one object. The actual assignment of an object 
to a cell is the responsibility of the memory allocator. We 
require our allocator to provide some key pieces of metadata 
about our memory blocks. The allocator is responsible for 
determining the size of each block, the number of cells in each 
block, and the size of any cell in that block. Also, it is 
responsible for providing a physical pointer to each of these 
blocks to our wrapper, which will subsequently pass these 
pointers to our Sweeper in the form of a physical address. 
 

 
 

Figure 5: Object and Block Metadata Layout: 2 words for object header and 
block metadata, which starts every block. 

 

    Additionally, we assume that the first 128 bits of each block 

contain this metadata, along with the head pointer of the Free 

List for the given block. The first 128 bits of each cell contain 

the object header for the object that resides in this cell. The first 

32 bits of the header are the TIB pointer as previously 

discussed. Bit 64 is the Mark Bit. Bit 65 is the Tag Bit, which 

tells our Sweeper if this is a live object. Bit 66 is the FL Bit, 

which tells us if this cell already resides within the Free List for 

a given block. Bits 0-63 are the FLNext pointer, which is a 

pointer to the next element in the linked-list-based Free List.  

    From our memory and block design, our Sweeper can operate 

in a simplified hardware module. The Sweeper takes a start 

signal from the wrapper along with a block virtual address 

pointer. The Sweeper loads the first two words from the 

corresponding physical address into two separate registers that 

provide us with the block metadata. The Sweeper then uses the 

block size, cell size, and number of cells to iterate through the 

block. On each iteration, the sweeper will check the FL Bit, Tag 

Bit, and Mark Bit for a ‘010’ combination. This indicates that 

there is a live object here, it’s not currently in the free list, and 

is no longer reachable by the program. The Sweeper performs 

these checks via bit masks and basic muxes. Upon identifying 

a ‘010’ combination, the sweeper saves the current Free List 

Head Pointer in the FLNext field for the cell in question and 

sets the cell pointer as the new Free List Head Pointer.  

    The Sweeper also sets the mark bit of every cell header it 

visits to zero to reset for subsequent GC iterations. After 

iterating through the entire block, the Sweeper indicates to the 

wrapper that it is ready for a new block pointer and repeats the 

process until the Sweep Queue is empty. An important 

advantage of the Sweeper’s design is that we can have multiple 

Sweepers running at once, operating on separate blocks in 

memory to free cells in a highly parallel manner. The Sweeper 

also operates through an FSM that is controlled by the input 

signals and number of cells. 

 

V. EVALUATION 

A. Methodology 
After implementing each of the previously mentioned 

hardware modules in Chisel on top of the Rocket core, we began 
evaluation of their functionality and performance. We started 
with functional validation of our unit and submodules using 
microbenchmarks. Then, we conducted synthesis to determine 
the physical characteristics of our hardware. Next, we used our 
cycle-accurate simulation results from functional validation to 
create a performance model. Finally, we performed 
benchmarking with Java workloads to compare our hardware’s 
performance with a software-based tracing collector.  
 
B. Functional Validation 

For functional validation, we wrote a driver to convert our 
Chisel HDL modules to Verilog RTL. After producing our 
Verilog modules, we utilized Verilator to create cycle-accurate 
C++ behavioral models of each. We wrote C++ 
microbenchmarks for both debugging and verification of our 
submodules’ functionality. This involved designing input 
signals and simulating memory and TLB responses. 
  

 
 
Figure 7: GTKWave Trace: Image of an example GTKWave output from a 
Marker testbench to verify outputs and intermediate signals as well as cycle 
counts. 

 
Careful examination of GTK wave traces allowed us to verify 

the behavior of each submodule. Additionally, these traces 
provided us with cycle counts on a per-object or per-reference 
basis for GCWrapper, Marker, Tracer, and Sweeper. We were 
able to infer this data from microbenchmark clock and output 
signals.  



 

   

 

 
 
Figure 8: Cycle-Accurate Simulations: Cycle counts for each submodule on a 
per object, reference, and block basis. 

 
We designed our microbenchmarks to give us cycle 

predictions on a per object, per reference, per block, and per cell 
basis. These numerical results form the foundation of our 
performance model that will be discussed in Section V-D. 
Importantly, we provide cycle counts for our submodules for 
varying degrees of memory latency depending on prefetching 
accuracy. Evidently, the sweeper module is most impacted by 
higher memory latency. The most important independent 
variables for GC performance are the heap size and the number 
of objects and references in program memory. 
 
C. Physical Characteristics 

To conduct area, power, and timing analysis of our RTL 
design, we synthesized using the Cadence Genus Synthesis 
Tool. We did this using TSMC PDKs for a 65 nm technology 
node. Our design passed static timing analysis (STA) with a 
clock frequency of 500 MHz.  
 

 
 
Figure 9: Area Comparison: Total area of GC unit in comparison to Rocket 
core. The Rocket core was synthesized with SAED PDKs for a 28nm 
technology node, so the area was converted to its 65nm technology equivalent 
[11].  

 

 
 

Figure 10: Area Breakdown: Area of each submodule of our GC unit. 

 
As seen in Figure 9, our GC unit had an overall area of 

3.25mm². This corresponds to ~11% of the Rocket core total 
area, supporting the feasibility of integrating this unit into a 
RocketChip SoC. Figure 10 conveys that the Marker, Tracer, 
and Sweeper submodules had similar areas around 1 mm², most 
of which is reserved for their respective queues. Table 1 shows 
a physical comparison between our hardware unit to Maas’s [1]. 
Our unit was smaller, but both units were less than 20% of the 
area of the Rocket core. The power for our hardware unit was 
359 mW which was less than the Maas unit [1] and the overall 
power for the Rocket core.  
 

Table 1: Area Comparison 

 Rocket core Maas Unit [1] Our GC Unit 

Technology 
(nm) 

28 28 65 

Factor [11] 3.3x 3.3x 1x 

Area (mm²) 8.7 1.8 3.25 

Converted 
Area (mm²) 

28.71 5.94 3.25 

 

D. Performance Evaluation 
We selected workloads from the DaCapo Java benchmark 

suite to evaluate our hardware unit against software-based GC. 
Due to the extremely invasive nature of GC operations, full 
integration testing and live evaluation of a hardware garbage 
collector requires modification of a virtual machine’s memory 
management system. For our research, end-to-end evaluation 
also requires enforcing cache coherence protocols and full 
integration into the RocketChip SoC to run the Java workloads. 
These complex steps were outside the scope of our project. 
Therefore, we took an alternative approach to evaluation of our 
hardware unit. Using our cycle-accurate functional validation 
results from Section V-B, we were able to develop a model for 
time spent per GC operation on a given application. The 
following equations were devised for cycle and time 
calculations:  

 

𝑀𝑎𝑟𝑘 𝐶𝑦𝑐𝑙𝑒𝑠 (𝑀𝐶) = 𝐵 (𝑀𝑎𝑥((𝑀1 ∗ 𝑋 + 𝑀2 ∗ 𝑌), (𝑇 ∗ 𝑌)))   

 
B: Overlap factor, M1: marker object cycles, M2: marker reference cycles, T: 
tracer cycles, X: total objects, Y: total references 

 

𝑆𝑤𝑒𝑒𝑝 𝐶𝑦𝑐𝑙𝑒𝑠 (𝑆𝐶) =
(𝑆1 ∗ 𝑍 + 𝑆2 ∗ 𝑈)

𝑁
 

 
S1: sweeper block cycles, S2: sweeper cell cycles, Z: blocks, U: total cells, N: 
number of sweeper units 

 

𝐺𝐶 𝑇𝑖𝑚𝑒 =
(𝑀𝐶 + 𝑆𝐶)

𝑓
 

f: frequency 

 
We benchmarked total and average time spent in GC for three 

different workloads from the DaCapo suite. These workloads 
were selected due to their high GC time. We ran the workloads 
using OpenJDK’s Java VM with the MarkSweepGC collector 
enabled. To evaluate these workloads with our performance 
model, we tracked the average number of objects, object size, 
and object references in the 1GB heap across all GC operations. 
Using the clock frequency verified with STA in Section V-C, 
we were able to obtain performance results for our hardware 
unit on these workloads.  



 

   

 

 

 
 
Figure 11: Benchmark Performance: Average time per GC operation (mark-
sweep) across DaCapo workloads using 1GB heap.  

 
In Figure 11, we can see the average time per GC operation 

for our hardware unit compared to the software-based GC. We 
find an average performance speedup factor of 1.68x across the 
three workloads, demonstrating a clear performance gain. The 
batik workload was especially GC-intensive, as it spent 53% of 
total application runtime in GC. With a performance speedup 
factor of 1.55x, our GC unit provided a 23.2% overall 
application speedup for batik. The other two applications spent 
significantly lower amounts of time in GC but still saw 
application speedups with our GC unit. 

VI. DISCUSSION  

     With an average speedup factor of 1.68x for the three 
DaCapo benchmarks discussed in Section V-D, the 
performance utility of our GC unit is immediately evident. As 
expected, the performance benefit of a hardware-based garbage 
collection is more pronounced for the software programs that 
have a larger GC overhead. Although the Maas hardware unit 
was tested with different workloads in the DaCapo suite, their 
hardware achieved roughly a 3.3x speedup. Evidently, our GC 
hardware is less efficient than the Maas GC. Although both our 
hardware and Maas’s demonstrate the effectiveness of running 
GC in hardware, it is important to examine the differences 
between both hardware units.  

The total area for our GC hardware is 3.25 mm², while Maas’s 
hardware is 5.94 mm² (after conversion from 28nm to 65nm 
technology [11]). Therefore, our performance inefficiency is 
partially compensated for by a smaller surface area. With our 
smaller surface area, we have a lower power draw—as 
expected. We presume that a larger and more complex garbage 
collector could achieve results like the Maas hardware.  

 
Table 2: Trade-offs 

 Maas Unit [1] Our GC Unit 

Technology (nm) 28 65 

Area (mm²) 1.8 3.25 

Power (mW) 460 460 

Speedup Factor 3.3x 1.68x 

 

We offer some potential explanations for the discrepancies 

between the two hardware accelerators. Firstly, our hardware 

does not enforce any cache coherence protocols whereas Maas 

does. Secondly, our hardware was synthesized using TSMC 

PDKs while Maas is synthesized with more conservative SAED 

PDKs. This likely accounts for some of the area difference 

between the accelerators. Additionally, Maas’ GC unit used a 

larger queue size, which directly impacts area. Third, we 

assumed a conventional object header layout and TIB structure, 

while Maas utilized a bidirectional object layout and modified 

TIB to achieve faster results [1]. Finally, we did not actually 

implement a PTW and TLB for our modules while Maas did, 

which likely contributed to our smaller size. 

Nevertheless, both units demonstrate the effectiveness of 
offloading stop-the-world tracing GC to a dedicated hardware 
accelerator. Adjusting the object layout and mark-sweep logic 
to reduce memory accesses, as well as adding additional 
sweeper units for greater parallelization, could increase the 
performance gain from our hardware unit. Further testing to 
better optimize our queue size could also improve performance. 
Finally, examining additional Java workloads to test our 
hardware with high or low cyclic reference counts could also be 
indicative of potential limitations in our design.  

In terms of practical usage, fully integrating our hardware into 
the RocketChip SoC to run actual Java workloads with a 
modified Java VM would be the next step. Another important 
avenue of exploration is concurrent GC with our hardware 
design and measuring the added complexity it would introduce. 

VII. CONCLUSION 

We implemented a hardware accelerator designed for GC that 

can be integrated into an SoC at a relatively low hardware cost. 

It specifically implements tracing, stop-the-world GC for the 

Java applications running on the CPU. The hardware unit takes 

up 11% of the area of the Rocket core and provides a speedup 

of 1.68x. For managed languages, GC can consume large 

percentages of workload runtimes, causing significant 

performance slowdowns. These results make a strong case for 

offloading the GC process onto a dedicated hardware 

accelerator.  

More broadly, this paper supports the ongoing research of 

application-specific hardware acceleration for parallelizable 

processes. As managed languages continue to dominate modern 

software development, the computing industry demands higher 

throughput and faster memory management. For hardware that 

prioritizes performance over size and power, such as personal 

computers or servers, incorporating garbage collectors in an 

SoC might prove effective. 
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APPENDIX A 

DIVISION OF LABOR 

Both Evan Yee and Evan Lankford researched the tools and 

relevant work for this project. Evan Yee took the lead on 

building the marker and tracer Chisel modules and Evan 

Lankford took the lead on building the sweeper Chisel module. 

Both members collaborated on building the garbage collection 

wrapper module. Evan Yee focused on building testbenches for 

each module in Verilator. Evan Lankford focused on synthesis 

and analyzing physical characteristics. Both members worked 

on benchmarking performance against software GC. Both 

members were also responsible for documentation and paper 

writing.  

APPENDIX B 

TIMELINE 

Our 12-week timeline was split into major milestones that are 

listed below. 

 

 
 

Milestone 1: Research and relevant work 

Milestone 2: Design GC hardware 

Milestone 3: Implement GC Hardware in Chisel modules 

Milestone 4: Functional Validation with Verilator 

Milestone 5: Synthesis and Physical Characteristics 

Milestone 6: Performance Evaluation & Benchmarking 

Milestone 7: Final Report 
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