Implementing Garbage Collection in Hardware

Yee, Evan. Author, ECE, Duke University, Lankford, Evan. Author, ECE, Duke University

Abstract—Garbage collection (GC) is typically a software-based
process in managed languages that is responsible for freeing
memory-allocated objects when a program no longer needs them.
Even in multi-threaded or multi-core processors, the processor
itself is typically in charge of running the GC program. Because of
the linear nature of processors, a simple pipelined core might be
poorly suited for GC. Accordingly, improving the efficiency of GC
for workloads that spend large proportions of CPU cycles on GC
can enhance processor performance and energy consumption.

In this paper, we propose a dedicated hardware-based garbage
collection module integrated into a RISC-V RocketChip SoC. By
examining the performance and physical characteristics, we
compare the trade-offs and potential utility of a dedicated
hardware garbage collector for certain workloads. Based on the
work of Maas et. al. [1], we designed our own GC unit that
implements parallel marking and tracing with a block-based
sweeper. We propose a new object layout, utilizing shared
knowledge between the allocator and GC hardware. We
completed functional verification using Verilator testbenches and
synthesized our design using the Cadence Genus Synthesis Tool.
Finally, we built a performance model from our microbenchmark
results to compare to software-based GC on OpenJDK’s JVM
running workloads from the DaCapo Java benchmark suite.

We found an average performance improvement of 1.62x over
software-based GC with an 11.3% increase in SoC surface area.
We demonstrate that memory management is well-suited for
parallel hardware acceleration and compare our performance,
timing, power, and area to Maas’s hardware.

Keywords-hardware accelerators; garbage collection;
memory management, Java benchmarks;

|. INTRODUCTION & PROBLEM STATEMENT

Today, many modern workloads are written in managed
languages rather than compiled languages. One fundamental
advantage of managed languages is the service of garbage
collection (GC). Garbage collection is a process that allows
the automatic freeing of unreachable memory-allocated
objects. Typically, GC runs on a pipelined processor in
software. However, because of the linear nature of processors,
some research has found them to be ill-equipped to efficiently
handle these potentially parallelizable memory operations
[10]. For example, most objects in memory can be processed
independently and could benefit from higher-throughput
hardware. Moreover, traversal of object graphs like the heap is
a recursive process that can visit each branch in parallel.
Accordingly, researchers have investigated the utility of
garbage collection hardware accelerators.

Maas et. al. [1] proposed a stop-the-world tracing GC
hardware accelerator for RISC-V processors. Stop-the-world
GC pauses the processor’s application to perform memory
management rather than running concurrently with the
processor. It is typically triggered when a capacity threshold is
reached in the memory heap.

By offloading garbage collection to a dedicated hardware

module, Maas demonstrated that there is the potential for large
improvements in workload performance. Fully implementing a
hardware garbage collector requires modifications to CPU
architecture, virtual machine memory management, memory
hierarchy, and the actual SoC modules.

We built our GC hardware modules with an emphasis on
high throughput while preserving simplicity. We specifically
targeted Java workloads that spend large amounts of time in
GC. Once GC is triggered in Java, the memory management
system passes reference roots and memory blocks to our
hardware rather than initiating software-based GC

To improve the efficiency of GC operations, we constructed
a stop-the-world mark-and-sweep tracing garbage collector in
Chisel alongside the in-order RISC-V Rocket core processor.
We utilized the existing RocketCore framework with TileLink
and HellaCache protocols for memory and cache accesses. We
compiled our implementation into RTL modules and verified
its behavior with Verilator testbenches.

Through synthesis and performance evaluation on a subset
of the DaCapo Java benchmark suite, we hope to prove the
functionality of our hardware accelerator and utility of
hardware-based garbage collection.

Java Program Garbage Collection Workflow

< >im,..,,‘.‘m;§}1 T e {5}
Java Program — >
o I N e/
e e
=

Garbage
oo

Figure 1: Basic System Architecture: Hardware is initiated by heap usage.
Once complete, the CPU resumes program.

Il. RELATED WORK

There has been a fair amount of work in the hardware
garbage collection space. Researchers have quantified the
performance improvement of moving GC work into hardware
[6]. One major topic that was mentioned in [1] and is the focus
of other research is concurrent garbage collection [4]. As
opposed to “stop-the-world” collection, concurrent GC runs in
parallel to an application without pausing it. The speedups
produced by concurrent GC come with complexity trade-offs
that were unfeasible for this paper to explore in the given
timeframe. For places like data centers, the pause times for stop-
the-world GC can be massive and problematic [2-3]. However,
stop-the-world GC still provides performance improvements
over traditional GC [1]. Using Chisel [9] to build hardware
modules was influenced by Maas’ use of RocketChip, which
implements the Rocket core [5] in Chisel.

I1l. RESEARCH QUESTIONS

Our project broadly focuses on the trade-offs between
hardware-dedicated and software-based GC. Specifically, our
project assesses both the feasibility and utility of developing a
dedicated GC unit in hardware. A pipelined processor has
hardware limitations that make efficient GC difficult.
Accordingly, we hope to quantify the potential impact of a
hardware unit on workload performance, power consumption,
and area. Additionally, we intend to compare our hardware and
design choices to Maas’ hardware to investigate potential
improvements and the impacts of different object layouts and
structures.

We intend to study how various Java workloads might
benefit from hardware-accelerated GC. Using the DaCapo
benchmark suite, we hope to establish the types of application
workloads that might be best suited for our mark-sweep stop-
the-world garbage collector.

More broadly, we also hope to offer a solution for how to
build a hardware accelerator for garbage collection. Aside from
the performance and physical ramifications, studying GC
designs will help us propose what the unit will look like strictly
in hardware logic.

To briefly summarize, our project investigates how to design
hardware-based GC. Moreover, it evaluates performance of
hardware-based GC compared to software-based GC and
establishes the area and power of such a module. Finally, we
examine the use cases for hardware-based GC and explore the
ramifications of alternative hardware design choices.

bl
i MEML D4
' Root PTCs
_____________ j i
: Cuce Queve i
[- 3| Trecec
Deass ok
o o -0 e
ac st si’"t';lm‘: SRS—
5-.:::9 veve Sweefec
------ “ Peaas Beck]
— T
; 6] |
:
i
1
L
: e
i Data Block Pivy
1

Figure 2: GC Wrapper Architecture: a block diagram of the modules and
data structures that are wrapped within our unit.

1V. PROPOSED SOLUTION
A. Overview

We elected to construct our hardware unit through a
modular approach, separating the responsibility and
functionality of our mark-sweep collector into submodules
wrapped in a single controller file. This controller file is
responsible for the 1/0 signals, memory pointer management,
and providing a clean top-level module for synthesis. The four
modules communicate through various input registers, control
signals, and queues that run in parallel via separate FSMs.

This GC unit is built adjacent to the in-order Rocket core
on the RocketChip SoC. It does not disrupt the serial
processing of the CPU. However, it does interface with the
memory and the cache hierarchy directly. The GC utilizes
HellaCache and TileLink for memory 1/O and requires TLB
and PTW modules to handle address translation.

Our hardware unit is initiated by the virtual machine
memory management system through a signal that goes high
when the memory heap reaches a certain utilization threshold
during runtime. We also simplify our hardware complexity
through some important assumptions about memory. Our first
assumption is that the root object pointers for a program are
easily accessible and can be passed to our GC unit with
minimal computation. We also assume a traditional object
header layout that includes a TIB pointer as well as three bits
for information about marking, free list status, and validity.
The second half of the header is reserved for a pointer to the
next element in a free list. For a 40-byte object, this totals to
roughly a 29% minimum memory overhead for object
memory, with even more being used for our TIB data and our
block metadata. Finally, we assume that the memory allocator
accurately updates the necessary metadata regarding each
memory block such as cell size, block size, and free list head.
We assume this metadata is listed at the start of each memory
block.

B. Hardware Modules

1. GC Wrapper

This module acts as the central controller for our hardware
GC. It coordinates and instantiates the Marker, Tracer, and
Sweeper modules, managing initiation, execution, and data
movement. It operates through three different FSMs, one of
which starts by loading root object addresses from a dedicated
place in memory into a mark queue. The inputs into the wrapper
are a start signal, the address of the reference roots in memory,
and the address of the memory block pointers. The wrapper
notifies the memory management system when GC has
finished, which occurs when all the pointer queues are empty
and the sweeper is idle.

Our wrapper allows the Marker, Tracer, and Sweeper to
process memory independently, supporting the parallelization
of GC. The wrapper pops addresses from our Mark Queue for
the Marker and adds relevant outbound references from Marker
to our Trace Queue. Similarly, the wrapper is responsible for
popping addresses from the Trace Queue for the Tracer and
passing relevant addresses to the mark queue. The wrapper is
also responsible for initiating the sweeper and passing it the
necessary block pointers that it loaded into the Sweep Queue.
Our Mark Queue, Trace Queue, and Sweep Queue are each
1000 entries in size.

ADDRESS
TRANSLATION

LOAD STATUS WORD IDLE

Waiting for object
ter

Follow PAddr to
Ioad abject head
into reg

—

Object Mem Response

Use TL 1o get point

object PAddr

SET MARK BIT

Write MarkBit=1 and

f Count == NumRefs
load TIB
of

Mem Respanse]

wiTIB
L LOAD NUM REFS

1 Count < NumRefs

PROCESS REFS

QUTPUT REF

Read TIB header to get Load word into reg for
number of outbound offset
rels

Output (Object PTR +
Offset). AddrReady=1 for
one cydle

Next Cyole

ADDRESS
TRANSLATION

REQUEST MEM Response from

Mark Queve IDLE

‘Waiting for object
Follow PAddr to pointer

Mem

Use TLB to get
objeot PAddr

Mem Request Vakd

h If Count == NumRefs

WAIT MEM

Load object header o
register once mem

responds e
Mem Response

u
Data Ready HIGH

Figure 4: Tracer State Machines: The logic for Tracer to visit potentially
cyclic references.

2. Marker

This module performs the actual marking for GC. It takes in
a start flag from the wrapper as well as a virtual address of an
object to visit. We designed our Marker to translate this address
using the TLB module and interface. The Marker then loads the
word at the physical address of the object in question. This word
is the first half of the object header. Following the
“conventional” object layout [1], we read the first 32 bits from
this register value as a virtual address of the Type Information
Block (TIB) which contains the relevant outbound reference
metadata for the object. Moreover, the marker sets the LSB of
this register to 1 (the Mark Bit) and saves the word back into
memory. This design of the Marker differs from Maas [1], who
elects for a “bidirectional” object layout and added complexity
for performance improvements.

W, T oF Ok A

v sy biAs s
[REFS | OFFLET \[OFroH L OFFSEY | --.

tomd
*
Lows AP Seeer | = BN]

Figure 5: TIB Layout: The number of outbound references is followed by the
offset for each reference

With the TIB pointer for the object in question, the Marker
also translates this address using the TLB. We then load the
word at the corresponding physical address into a register. This
64-bit value tells us how many outbound references this object
contains. We then iterate through each word adjacent to this
physical address, which provides the offset value of each
outbound reference. The Marker adds these offset values to the
original virtual address of the object in question and outputs
these for the Tracer to visit, along with a data-ready bit.

More broadly, the Marker is responsible for indicating to the
Sweeper if an object in memory is still reachable by the
program. If so, the Mark Bit will be high and this cell in
memory will not be freed. Marker traverses the object tree
starting at the root nodes until it has marked every outbound
reference and sends nodes to Tracer to ensure it does not
conduct duplicate visits to the same object.

3. Tracer

The Tracer module traverses all the outbound references
from an object that are popped from the Mark Queue. These
outbound addresses are provided from the Trace Queue, which
intakes addresses that were found from an object’s TIB
(handled in Marker). The purpose of the Tracer is to ensure
cyclic references are not re-visited by the Marker. As inputs,
Tracer needs a virtual address from the Trace Queue as well as
a start signal from the wrapper. The tracer translates the virtual
address into a physical address via the TLB. It then loads the
word (first half of the 128-bit header) from this address into a
register and assesses if the LSB (Mark Bit) is 1. If so, this object
has already been visited by the Marker and does not need to be
marked again (a cyclical reference graph likely exists
somewhere in the program). However, if the LSB is 0, the
virtual address is outputted by the Tracer along with a data
ready bit so the address can be added to the Mark Queue.

The actual implementation of the Tracer operates through an
FSM where we are either waiting for a new address, translating
addresses, loading words, and conditionally sending data out.

Figure 6: Sweeper State Machine: Sweeper reads block metadata then
iterates through the cells.

4, Sweeper
This module is responsible for adding memory cells to the
Free List based on the previous operations by the Marker and

Tracer. The module intakes a virtual address that points to a
memory block, as well as a start signal by the wrapper. This
sweeper required some important design choices / assumptions
about memory to implement. Physical memory is divided into
blocks, each of which contains several cells. Each cell
corresponds to one object. The actual assignment of an object
to a cell is the responsibility of the memory allocator. We
require our allocator to provide some key pieces of metadata
about our memory blocks. The allocator is responsible for
determining the size of each block, the number of cells in each
block, and the size of any cell in that block. Also, it is
responsible for providing a physical pointer to each of these
blocks to our wrapper, which will subsequently pass these
pointers to our Sweeper in the form of a physical address.

obdech Heeder Lajout
33 by |G vt Y b
[r28 Pre [HPRTb] Foe Lst Newt PTR |
—_—

I\ I
e | werd 2

el
.

hecder okyeet

MEM Bloce Mefdarta
[Winats [a5 | FL ek 78]

Figure 5: Object and Block Metadata Layout: 2 words for object header and
block metadata, which starts every block.

Additionally, we assume that the first 128 bits of each block
contain this metadata, along with the head pointer of the Free
List for the given block. The first 128 bits of each cell contain
the object header for the object that resides in this cell. The first
32 bits of the header are the TIB pointer as previously
discussed. Bit 64 is the Mark Bit. Bit 65 is the Tag Bit, which
tells our Sweeper if this is a live object. Bit 66 is the FL Bit,
which tells us if this cell already resides within the Free List for
a given block. Bits 0-63 are the FLNext pointer, which is a
pointer to the next element in the linked-list-based Free List.

From our memory and block design, our Sweeper can operate
in a simplified hardware module. The Sweeper takes a start
signal from the wrapper along with a block virtual address
pointer. The Sweeper loads the first two words from the
corresponding physical address into two separate registers that
provide us with the block metadata. The Sweeper then uses the
block size, cell size, and number of cells to iterate through the
block. On each iteration, the sweeper will check the FL Bit, Tag
Bit, and Mark Bit for a ‘010° combination. This indicates that
there is a live object here, it’s not currently in the free list, and
is no longer reachable by the program. The Sweeper performs
these checks via bit masks and basic muxes. Upon identifying
a ‘010’ combination, the sweeper saves the current Free List
Head Pointer in the FLNext field for the cell in question and
sets the cell pointer as the new Free List Head Pointer.

The Sweeper also sets the mark bit of every cell header it
visits to zero to reset for subsequent GC iterations. After
iterating through the entire block, the Sweeper indicates to the
wrapper that it is ready for a new block pointer and repeats the
process until the Sweep Queue is empty. An important
advantage of the Sweeper’s design is that we can have multiple
Sweepers running at once, operating on separate blocks in
memory to free cells in a highly parallel manner. The Sweeper
also operates through an FSM that is controlled by the input
signals and number of cells.

V. EVALUATION

A. Methodology

After implementing each of the previously mentioned
hardware modules in Chisel on top of the Rocket core, we began
evaluation of their functionality and performance. We started
with functional validation of our unit and submodules using
microbenchmarks. Then, we conducted synthesis to determine
the physical characteristics of our hardware. Next, we used our
cycle-accurate simulation results from functional validation to
create a performance model. Finally, we performed
benchmarking with Java workloads to compare our hardware’s
performance with a software-based tracing collector.

B. Functional Validation

For functional validation, we wrote a driver to convert our
Chisel HDL modules to Verilog RTL. After producing our
Verilog modules, we utilized Verilator to create cycle-accurate
C++ behavioral models of each. We wrote C++
microbenchmarks for both debugging and verification of our
submodules’ functionality. This involved designing input
signals and simulating memory and TLB responses.

Figure 7: GTKWave Trace: Image of an example GTKWave output from a
Marker testbench to verify outputs and intermediate signals as well as cycle
counts.

Careful examination of GTK wave traces allowed us to verify
the behavior of each submodule. Additionally, these traces
provided us with cycle counts on a per-object or per-reference
basis for GCWrapper, Marker, Tracer, and Sweeper. We were
able to infer this data from microbenchmark clock and output
signals.

Module Cycle Performance with Different Memory Latency
M 2cycles [l 5cycles 20 cycles

100

87
7%

50

43
36

25 3
3
. —m| =@ ol
Marker Per Marker Per Tracer Per Sweeper Per Sweeger Ee\l in
oc|

Object Reference in Reference Block e
Object

Figure 8: Cycle-Accurate Simulations: Cycle counts for each submodule on a
per object, reference, and block basis.

We designed our microbenchmarks to give us cycle
predictions on a per object, per reference, per block, and per cell
basis. These numerical results form the foundation of our
performance model that will be discussed in Section V-D.
Importantly, we provide cycle counts for our submodules for
varying degrees of memory latency depending on prefetching
accuracy. Evidently, the sweeper module is most impacted by
higher memory latency. The most important independent
variables for GC performance are the heap size and the number
of objects and references in program memory.

C. Physical Characteristics

To conduct area, power, and timing analysis of our RTL
design, we synthesized using the Cadence Genus Synthesis
Tool. We did this using TSMC PDKs for a 65 nm technology
node. Our design passed static timing analysis (STA) with a
clock frequency of 500 MHz.

30

20

Area in mm?

GC Unit Rocket core

Figure 9: Area Comparison: Total area of GC unit in comparison to Rocket
core. The Rocket core was synthesized with SAED PDKs for a 28nm
technology node, so the area was converted to its 65nm technology equivalent
[11].

Area in mm?

Figure 10: Area Breakdown: Area of each submodule of our GC unit.

As seen in Figure 9, our GC unit had an overall area of
3.25mma2. This corresponds to ~11% of the Rocket core total
area, supporting the feasibility of integrating this unit into a
RocketChip SoC. Figure 10 conveys that the Marker, Tracer,
and Sweeper submodules had similar areas around 1 mm2, most
of which is reserved for their respective queues. Table 1 shows
a physical comparison between our hardware unit to Maas’s [1].
Our unit was smaller, but both units were less than 20% of the
area of the Rocket core. The power for our hardware unit was
359 mW which was less than the Maas unit [1] and the overall
power for the Rocket core.

Table 1: Area Comparison

Rocket core Maas Unit [1] Our GC Unit
Technology 28 28 65
(nm)
Factor [11] 3.3x 3.3x 1x
Area (mm?) 8.7 1.8 3.25
Converted 28.71 5.94 3.25
Area (mm?)

D. Performance Evaluation

We selected workloads from the DaCapo Java benchmark
suite to evaluate our hardware unit against software-based GC.
Due to the extremely invasive nature of GC operations, full
integration testing and live evaluation of a hardware garbage
collector requires modification of a virtual machine’s memory
management system. For our research, end-to-end evaluation
also requires enforcing cache coherence protocols and full
integration into the RocketChip SoC to run the Java workloads.
These complex steps were outside the scope of our project.
Therefore, we took an alternative approach to evaluation of our
hardware unit. Using our cycle-accurate functional validation
results from Section V-B, we were able to develop a model for
time spent per GC operation on a given application. The
following equations were devised for cycle and time
calculations:

Mark Cycles (MC) = B (Max((Ml «X + M2 +Y), (T * y)))

B: Overlap factor, M1: marker object cycles, M2: marker reference cycles, T:
tracer cycles, X: total objects, Y: total references

S1*Z+82*U
Sweep Cycles (SC) =%

S1: sweeper block cycles, S2: sweeper cell cycles, Z: blocks, U: total cells, N:
number of sweeper units

_ (MC +5C)

GC Time
f

f: frequency

We benchmarked total and average time spent in GC for three
different workloads from the DaCapo suite. These workloads
were selected due to their high GC time. We ran the workloads
using OpenJDK’s Java VM with the MarkSweepGC collector
enabled. To evaluate these workloads with our performance
model, we tracked the average number of objects, object size,
and object references in the 1GB heap across all GC operations.
Using the clock frequency verified with STA in Section V-C,
we were able to obtain performance results for our hardware
unit on these workloads.

Benchmark Performance
W GCUnt W CPU
400

300

200

Time in ms

100

9179 14901

0 S
eclipse batik

graphchi

Figure 11: Benchmark Performance: Average time per GC operation (mark-
sweep) across DaCapo workloads using 1GB heap.

In Figure 11, we can see the average time per GC operation
for our hardware unit compared to the software-based GC. We
find an average performance speedup factor of 1.68x across the
three workloads, demonstrating a clear performance gain. The
batik workload was especially GC-intensive, as it spent 53% of
total application runtime in GC. With a performance speedup
factor of 1.55x, our GC unit provided a 23.2% overall
application speedup for batik. The other two applications spent
significantly lower amounts of time in GC but still saw
application speedups with our GC unit.

VI. DISCUSSION

With an average speedup factor of 1.68x for the three
DaCapo benchmarks discussed in Section V-D, the
performance utility of our GC unit is immediately evident. As
expected, the performance benefit of a hardware-based garbage
collection is more pronounced for the software programs that
have a larger GC overhead. Although the Maas hardware unit
was tested with different workloads in the DaCapo suite, their
hardware achieved roughly a 3.3x speedup. Evidently, our GC
hardware is less efficient than the Maas GC. Although both our
hardware and Maas’s demonstrate the effectiveness of running
GC in hardware, it is important to examine the differences
between both hardware units.

The total area for our GC hardware is 3.25 mmz2, while Maas’s
hardware is 5.94 mm2 (after conversion from 28nm to 65nm
technology [11]). Therefore, our performance inefficiency is
partially compensated for by a smaller surface area. With our
smaller surface area, we have a lower power draw—as
expected. We presume that a larger and more complex garbage
collector could achieve results like the Maas hardware.

Table 2: Trade-offs

Maas Unit [1] Our GC Unit
Technology (nm) 28 65
Area (mm?) 1.8 3.25
Power (mW) 460 460
Speedup Factor 3.3x 1.68x

We offer some potential explanations for the discrepancies
between the two hardware accelerators. Firstly, our hardware
does not enforce any cache coherence protocols whereas Maas
does. Secondly, our hardware was synthesized using TSMC

PDKs while Maas is synthesized with more conservative SAED
PDKs. This likely accounts for some of the area difference
between the accelerators. Additionally, Maas’ GC unit used a
larger queue size, which directly impacts area. Third, we
assumed a conventional object header layout and TIB structure,
while Maas utilized a bidirectional object layout and modified
TIB to achieve faster results [1]. Finally, we did not actually
implement a PTW and TLB for our modules while Maas did,
which likely contributed to our smaller size.

Nevertheless, both units demonstrate the effectiveness of
offloading stop-the-world tracing GC to a dedicated hardware
accelerator. Adjusting the object layout and mark-sweep logic
to reduce memory accesses, as well as adding additional
sweeper units for greater parallelization, could increase the
performance gain from our hardware unit. Further testing to
better optimize our queue size could also improve performance.
Finally, examining additional Java workloads to test our
hardware with high or low cyclic reference counts could also be
indicative of potential limitations in our design.

In terms of practical usage, fully integrating our hardware into
the RocketChip SoC to run actual Java workloads with a
modified Java VM would be the next step. Another important
avenue of exploration is concurrent GC with our hardware
design and measuring the added complexity it would introduce.

VII. CONCLUSION

We implemented a hardware accelerator designed for GC that
can be integrated into an SoC at a relatively low hardware cost.
It specifically implements tracing, stop-the-world GC for the
Java applications running on the CPU. The hardware unit takes
up 11% of the area of the Rocket core and provides a speedup
of 1.68x. For managed languages, GC can consume large
percentages of workload runtimes, causing significant
performance slowdowns. These results make a strong case for
offloading the GC process onto a dedicated hardware
accelerator.

More broadly, this paper supports the ongoing research of
application-specific hardware acceleration for parallelizable
processes. As managed languages continue to dominate modern
software development, the computing industry demands higher
throughput and faster memory management. For hardware that
prioritizes performance over size and power, such as personal
computers or servers, incorporating garbage collectors in an
SoC might prove effective.

REFERENCES

[1] Maas, Martin, Krste Asanovi¢, and John Kubiatowicz. "A Hardware
Accelerator for Tracing Garbage Collection." Proceedings of the 45th
Annual International Symposium on Computer Architecture (ISCA '18),
June 2018, pp. 66-79.

[2] I. Gog, J. Giceva, M. Schwarzkopf, K. Viswani, D. Vytiniotis, G.
Ramalingan et al., “Broom: Sweeping out Garbage Collection from Big
Data systems,” in Proceedings of the 15th Workshop on Hot Topics in
Operating Systems (HotOS), 2015.

[3] E. Kaczmarek and L. Yi, “Taming GC Pauses for Humongous Java Heaps
in Spark Graph Computing,” 2015.

[4] E. Moss, “The Cleanest Garbage Collection,” Commun. ACM, vol. 56, no.
12, pp. 100-100, Dec. 2013.

[5] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio
et al., “The Rocket Chip Generator,” EECS Dept, UC Berkeley, Tech. Rep.
UCB/EECS-2016-17, 2016.

[6] J. A. Joao, O. Mutlu, and Y. N. Patt, “Flexible reference-counting-based
hardware acceleration for garbage collection,” International Symposium on
Computer Architecture, Jun. 2009.

[7] N. Artyushov, “Revealing the length of Garbage Collection pauses,”
https://plumbr.eu/blog/garbage-collection/revealingthe-length-of-garbage-
collection-pauses.

[8] M. Maas, K. Asanovic, and J. Kubiatowicz, “Full-System Simulation of
Java Workloads with RISC-V and the Jikes Research Virtual Machine,” in
1st Workshop on Computer Architecture Research with RISC-V, 2017.

[9] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis, J.
Wawrzynek, and K. Asanovic, “Chisel: Constructing Hardware in a Scala
Embedded Language,” in Proceedings of the 49th Design Automation
Conference, 2012.

[10]M. Maas, K. Asanovic, and J. Kubiatowicz, “Grail Quest: A New Proposal
for Hardware-assisted Garbage Collection,” in Workshop on Architectures
and Systems for Big Data, 2016.

[11] A. Stillmaker and B. Baas, "Scaling equations for the accurate prediction
of CMOS device performance from 180nm to 7nm," Integration, vol. 58,
pp. 74-81, 2017.

https://plumbr.eu/blog/garbage-collection/revealingthe-length-of-garbage-collection-pauses
https://plumbr.eu/blog/garbage-collection/revealingthe-length-of-garbage-collection-pauses

APPENDIX A

DivisioN OF LABOR

Both Evan Yee and Evan Lankford researched the tools and
relevant work for this project. Evan Yee took the lead on
building the marker and tracer Chisel modules and Evan
Lankford took the lead on building the sweeper Chisel module.
Both members collaborated on building the garbage collection
wrapper module. Evan Yee focused on building testbenches for
each module in Verilator. Evan Lankford focused on synthesis
and analyzing physical characteristics. Both members worked
on benchmarking performance against software GC. Both
members were also responsible for documentation and paper
writing.

APPENDIX B

TIMELINE

Our 12-week timeline was split into major milestones that are
listed below.

December

WK1 oo WK WK 3 WKS oz WKS ooz WKE oo WKT oo WKB ooz WK oo WKTD e WKTT oo WK
C L] 2 [] 3 L] L] s L] s] L] 8 L] °] 0] L] 2)

| [

Physical and
gcWrapper timing
development

l Defining
Investigating deliverables and
et Core, project scope
Jikes, Dacapo

analysis

Background research Marker Verilator testbench Performance
on GC and Maas et development development and Analysis
al Chisel debugging

eclonecnespie Presentation and
logic of our GC Tracer and Sweeper o
g development g Report preparation

Milestone 1: Research and relevant work

Milestone 2: Desigh GC hardware

Milestone 3: Implement GC Hardware in Chisel modules
Milestone 4: Functional Validation with Verilator
Milestone 5: Synthesis and Physical Characteristics
Milestone 6: Performance Evaluation & Benchmarking
Milestone 7: Final Report

	I. Introduction & Problem Statement
	II. Related Work
	III. Research Questions
	IV. Proposed Solution
	A. Overview
	B. Hardware Modules

	Appendix A
	Division Of Labor
	Appendix B
	Timeline

